Superconducting Power Cables Concepts, design, applications

Antonio Morandi

DEI – Guglielmo Marconi Dep. of Electrical, Electronic and Information Engineering

University of Bologna, Italy

Saturday, November 13, 2021

Outline

- Concepts and layouts
- State of the art
- Design criteria

Electromagnetic Thermohydraulic Heat load and cooling

Applications

The ampacity project Customer / Industry

Layout of a conventional HV cable

A metallic shied (copper) is added to HV voltage cables in order to

- Equalize electric field stress in the cable insulation
- Provide Shielding of electromagnetic field
- Provide return path for Cable neutral and fault current

Transport current losses of Superconductors

AC Transport current losses (Norris)

$$Q = \frac{I_c^2 \mu_0}{\pi} \times \begin{cases} (1-i)\ln(1-i) + (2-i)\frac{i}{2} & \text{ellipse} \\ (1-i)\ln(1-i) + (1+i)\ln(1+i) - i^2 & \text{strip} \end{cases}$$

 $i = I_p/I_c, I_p = \text{current amplitude (peak)}$

DC Transport current losses (power law)

$$Q = k \left(\frac{I}{I_c}\right)^n$$

DC superconducting cables have practically no losses for operation below Ic

Layout of a cold dielectric SC cable

Cryogenic electrical insulation

A very reliable hybrid insulation systems based on pressurized liquid nitrogen and polypropylene laminate paper (PPLP) has been successfully developed (up to 275 kV AC)

- Similar to oil impregnated paper insulation system used for conventional high voltage power cable
- Air/moisture bubbles creates breakdown of insulation. High pressure operation of LN2 is required for avoiding bubbles.

Function of the shield of a cold dielectric HTS cable

The SC shield is periodically grounded along the cable. The two circuits are magnetically coupled.

- Currents are induced in the lossless
 SC shield preventing induced currents
 on the pipes in AC operation, thus
 reducing the total heat load of the
 cable
- A current in the same order of the transport current of the cable circulates in the shield

Equivalent circuit at the cable's terminals

 A very low service inductance is obtained thanks to the shield

Layout of a warm dielectric SC cable

- The shield operates at warm temperature
- Currents are induced on the pipes in AC operation, thus increasing the total heat load of the cable

Layout of a cold dielectric SC cable with two stage cooling

- Thermal insulation (vacuum + MLI)
 High temperature coolant (LN₂, ...)
 Thermal insulation (vacuum + MLI)
 Low temperature coolant (LH₂ or GHe)
 SC shield + Copper stabilizer
 Electrical insulation + Semicons
 Superconductor
 Copper former
 - LN₂ acts as a thermal shield for the LH₂ pipe
 - Heat load of LH₂ due to radiation is greatly reduced
 - Additional heat must be removed form the LN₂ pipe which can be done with lower power due to the higher temperature

The cold dielectric Three-Phase concentric cable

Three phases arrangements

Concentric phases

Separate phases with shared cryostat

Cold dielectric cable system with one terminal cooling station

3 bars < P < 20 bars

Cold dielectric cable system with Multiple Cooling points

An example: A DC HTS cable system made of two monopoles with distinct cryostats for closed-loop circulation of the coolant

Cryogenic apparatuses are grounded and accessible

Warm dielectric cable system with Multiple Cooling Stations

An example: A DC HTS cable system made of two monopoles with distinct cryostats for closed-loop circulation of the coolant

Cryogenic apparatuses operate at high voltage

UNIVERSITÀ DI BOLOGNA

- High voltage insulating transformers are needed for their supply
- High voltage maintenance must be planned

Practical cooling system

.... but superconductors rely on cooling. Is cooling technology well established, available and reliable enough?

10 kW cooling power at 77 K 12 W input / W cold 30000 hours maintenance

NeoKelvin®-Turbo 10kW

Up to 50 kW cooling power at 77 K 12 W input / W cold 30000 hours maintenance

Highly efficient and capable enough for the cooling of km long cables

Warm dielectric vs Cold dielectric SC cable

	Warm dielectric	Cold dielectric
Outer wet perimeter (heat load due to radiation)	Low	High
Dielectric	Conventional	Special
During fault reliability of insulation	Normal	Critical (bubbling)
Amount of superconductor	Low	High (shield)
Cryostat and cooling system	High voltage	Conventional
Service inductance	High	Low
Losses due to eddy currents induced in the cryostat	High	Low

Disadvantage of warm dielectric cable are not relevant in DC

Superconducting AC Cables State-of-the-Art of HTS AC Cable Field Tests

Superconducting AC Cables State-of-the-Art

Columbus

Ultera 13.2 kV, 3 kA, 200 m Triaxial[™] Design **BSCCO 2223** Energized 2006 High reliability

Ultera

LIPA

Figure: Nexans

Gochang

LS Cable 22.9 kV, 50 MVA, 100 m **BSCCO 2223 Energized 2007** 500 m field test with YBCO in 2011

More on HTS (AC & DC) cables

Minwon Park, Changwon National University, Recent status and progress on the HTS application of AC and DC power transmission in Korea, Sep. 20 2017 EUCAS, GENEVA

Outline

- Concepts and layouts
- State of the art
 - Design criteria Electromagnetic Thermohydraulic Heat load and cooling
- Applications

The ampacity project Customer / Industry

Electromagnetic Design of the cable (cold dielectric)

- Diameter of the former
- ✓ During the fault the current flows through the former producing heating
- No bubbles must occur in the coolant in order to avoid breakdown of the dielectric and irreversible damage the cable

$$A_f \int_{T_n}^{T_{final}} c \, dT = \int_{t_f}^{t_f + \Delta t_f} \frac{1}{\sigma} \frac{i^2}{A_f} dt$$

 $A_{\rm f}$, area of the former

 $T_{\rm final}$, temperature at the end of the fault

 $t_{\rm f}$, instant of fault

 Δt_f , duration of fault

I, current of the cable during the fault (rms equi

- σ , electric conductivity of copper
- c, specific heat of copper
- Temperature rise during the fault must remain within the bubbling limit
- High pressure operation allows higher temperature margin before bubbling

21

• Thickness of superconductor

- ✓ The operating point ($J B_{max}$) must be well below the Jc vs B curve
- \checkmark As a first approximation it is assumed that the field is parallel to the tape

$$\begin{split} \delta_{SC} &= N_{layers} \, \delta_{tape} \\ J &= \frac{I_{dc}}{\pi \left((R_f + \delta_{SC})^2 - R_f^2 \right) \cos \alpha} \\ B_{max} &= \mu_0 \, \frac{I_{dc}}{2\pi \left(R_f + \delta_{SC} \right)} \end{split}$$

 $\delta_{
m SC}$, thickness of the tape $N_{
m layers}$, numer of layers $\delta_{
m SC}$, thickness of the tape α , average winding angle s of the layer $I_{
m dc}$, nominal current of the DC cable

Thickness of insulation

✓ The maximum electric field must be well below the breakdown value

$$\delta_{ins} = R_{i,ins} \left(e^{\frac{V_{dc}}{\beta E_{max}R_{i,ins}}} - 1 \right)$$
Antonio Morandi

 $\delta_{\rm ms}$, thickness of insulation $R_{\rm i,ins}$, inner radius of insulation E_{max} , is the breakdown strength of the insulation β , safety margin (usually 0.33)

Thermo-hydraullic Design of the cable

A cryopipe made of two concentric cylinder is to be designed

 $D_{\rm i}$, inner diameter of the pipe $D_{\rm o}$, outer diameter of the pipe

The inner diameter D_i is fixed by the electromagnetic design of the cable

 $D_i = 2(R_f + \delta_{SC} + \delta_{ins})$

- ✓ Pressure at the outlet section cannot be below a proper minimum in order to avoid bubble formation
- Temperature at the outlet section must not overcome a proper limit in order to assure appropriate performance of the superconductor

Pressure and Temperature constraints assumed for the design of the cable systems

	Tin	Tout	Pin	Pout
LH_2 / MgB_2	20 K	≤ 25 K	20 bar	≥5 bar
LN ₂ / HTS	65 K	≤70 K	20 bar	≥5 bar

Average pressure and temperature gradients in the pipe (incompressible fluid is assumed)

f, friction factor $D_{\rm h}$, equivalent hydraulic diameter v, velocity of the coolant \dot{m} , mass flow rate of the coolant ho, mass density $c_{\rm p}$, specific heat at constant pressure q, total heat load for unit length of cable (W/m)

✓ The friction factor can be estimated by means of the Colebrook-White implicit equation

$$\frac{1}{\sqrt{f}} = -\log_{10}\left(\frac{5.02}{N_{\text{Re}}\sqrt{f}}\right)$$

with $N_{\text{Re}} = \frac{\rho v D_h}{\mu}$

 μ , dynamic viscosity of the coolant

Average physical properties of LH_2 and LN_2 over the considered intervals of Pressure and Temperature

	LH ₂	LN ₂
Mass density, kg/m ³	72.23	839
Specific heat, J/m ³ K	9169	2662
Dynamic viscosity, µPa*s	15.70	25.08

Total heat load q for unit length of the cable (W/m)

$$q = q_{radiation} + q_{em}$$

 $q_{\rm rad}$, heat load per unit lenght due to radiation from the outer environment $q_{\rm em}$, electromagnetic loss per unit length

$$q_{radiation} = \lambda \, \pi \, D_{o}$$

 $D_{\rm o}$, diameter of the outer pipe λ , is the heat load per unit surface (W/m²) due to radiation from the outer environment

Heat load due to radiation is nearly independent on the operating temperature of the cable. Today's technology allows a heat load from 300 K to 20 K of about 1.2 W / m²

	Т ₁ , К	T ₂ , K	λ, W/m²
from room temperature to LN ₂	300	77	1.195
from room temperature to LH ₂	300	21	1.235
from LN ₂ to LH ₂	77	21	0.040

Antoni C. Rubbia, "The future of large power electric transmission" SC Workshop, 2011

Typical losses at 65-80 K in cold dielectric power cables

	Dependence	Parameters	Losses at 65-77 K	Losses at RT
Radiation	Room temperature	Super-insulation spacer and diameter	0,5 to 2 W/m	12,5 à 50 W/m
HTS AC losses	Transported current Magnetic field distribution	Cable design (pitches, diameter,)	0,05 to 1 W/kA.m	1,25 to 15 W/kA.m
Dielectric AC losses	Voltage level	Capacity of the cable and material (tg δ)	Up to 1 W/m	Up to 12,5 W/m for 220 kV
Eddy current AC on the cryostat	Magnetic field distribution	Cable design (pitches, diameter,)	0,05 to 0,1 W/kA.m	1,25 to 2,5 W/kA.m

For a Cu cable typycal 20 W/kA.m

Nb: For DC current, the losses are only from radiation

C. E. Bruzek, "Introduction to superconducting power cable systems", ESAS Summer School, Bologna

Antonio Morandi

Electromagnetic

✓ Final expression of average pressure drop and temperature increment of the pipe

$$\frac{\Delta P}{\Delta x} = -\frac{f \dot{m}^2}{2\pi^2 \rho (D_0 - D_i) (D_0^2 - D_i^2)^2}$$

$$\frac{D_h = D_0 - D_i}{\nu = \frac{\dot{m}}{\rho \pi (D_0^2 - D_i^2)}} \longrightarrow \frac{\Delta T}{\Delta x} = \frac{f \dot{m}^2}{2\pi^2 c_p \rho^2 (D_0 - D_i) (D_0^2 - D_i^2)^2} + \frac{\lambda \pi D_0 + q_{core}}{\dot{m} c_p}$$

$$\frac{1}{\sqrt{f}} = -\log_{10} \left(\frac{5.04 \mu \pi (D_0 + D_i)}{\dot{m} \sqrt{f}}\right)$$

Two degrees of freedom exists for regulating the pressure drop and temperature increment of the pipe:

- the outer diameter of the pipe, D_0
- the mass flow rate of the coolant, \dot{m}

Examples of Temperature and Pressure gradients in the $\dot{m} - D_0$ plane

Assignment of D_0 and \dot{m} for a given distance L between cooling stations

- The iso-curves of maximum allowable temperature and pressure gradient are plotted in the $D_{\rm o}$ and \dot{m} plane
- Minimum $D_{\rm o}$ and \dot{m} are found at the intersection of the two curves
- D_{o} is assigned with an appropriate safety margin (e.g. 1.25); \dot{m} is chosen at the middle of the available interval

Termination – a crucial component

Thermal income from terminations		
Copper stage from 300 to 77 K	50 W / kA / lead	
HTS stage from 77 to 20 K	0.5 W / kA / lead	

Typical data widely reported in the literature

- The very main part of heat load comes from the copper stage of the termination to LN₂
- A dedicated cooling system for the termination is appropriate also in case of LN₂ / HTS system

Mexans

LIPA1 project Termination concept

- Vertical part:
 - Thermal gradient management (from 77 to 300 K)
 - Connection to grid

- Horizontal part:
 - Connection to HTS cable
 - Management of cable thermal shrinkage

Postdam - May 13, 2011 - 11

NEXANS PROPRIETARY

Coefficient of performance of the cooling system

Total cooling losses and efficiency of the DC cable

• Total cooling power

 $P_{\text{cooling}} = COP \left(q_{\text{radiation}} + q_{\text{em}} + q_{\text{friction}} \right) L_{\text{cable}} + COP_{\text{terminations}} P_{\text{terminations}}$

(Pumping losses are negligible)

 L_{cable} total length of the cable L distance between cooling stations $L_{\text{cable}} = N * L$

Given the length the total cooling power of the cable increases with the distance between cooling stations due to the increase of D_0 with L

Outline

- Concepts and layouts
- State of the art
- Design criteria

Electromagnetic

Thermohydraulic

Heat load and cooling

• Applications

The Ampacity project Customer / Industry

Advantages of HTS cables

- High current capacity & High power density
 - Increased power at the same voltage
 - Reduced voltage at the same power

Flexible planning

- Reduced size
- Constant temperature operation
 - No derating at hot ambient temperature
 - possibility of overload
- Fault current limiting capacity (if properly designed)
- Lower losses (cooling included)
- Lower inductance
- No environmental impact

Ampacity Project

Conventional Situation in Essen

HTS Cable plus FCL Situation in Essen

A transformer and a high voltage cable can be replaced by a medium voltage HTS cable in combination with a fault current limiter.

Status Ampacity Project

exans

- Objectives
 - Built and test a 40 MVA, 10 kV, 1 km superconducting cable in combination with a fault current limiter

L1

L2

Dielectric

L3

LN₂ back

- Project partners
 - Innogy, Nexans, KIT LN₂
- Budget
 - 13.5 Mio. €
- Duration

AmpaCity Cooling Unit

Liquid nitrogen is used

- as heat transfer medium
- as cooling agent
- LIN is pumped through the superconducting cable
- LIN is recooled in the subcooler (to -206°C)

LIN vaporizes at 150 mbar(a) (forced by vacuum pumps)

LIN temperature decreases to -209°C (expansion through the regulation valve)

Source: F. Herzog, et.al. , "Cooling unit for the AmpaCity project – One year successful operation", Cryogenics Volume 80, Part 2, December 2016, Pages 204-20, DOI: 10.1016/j.cryogenics.2016.04.001

AmpaCity Cooling Unit

Energy-data comparison (regular operation point)

Cable-cooling demand:1.8 kW (@ 67 K)Total required cooling capacity:3.4 kW (@ 64 K)Liquid nitrogen consumption:68 kg/h

Required electricity for N2-liquefying:33 kWExergetic effect LIN transport (130 km):1 kWPel. (vacuum pumps):5 kWPel. (other equipment):4 kWtotal:43 kW at RT

for comparison:

Pel. for mechanical cooling:

75 to 100 kW*

*(dependant on the availability of cooling water)

Source: F. Herzog, et.al. , "Cooling unit for the AmpaCity project – One year successful operation", Cryogenics Volume 80, Part 2, December 2016, Pages 204-20, DOI: 10.1016/j.cryogenics.2016.04.001

AmpaCity Cooling Unit

HTS-Cable		
Voltage	10,000 V	N
Capacity	40,000 kW	
Ccooling demand (actual):	1.8 kW (@ 67 K)	
<u>Cooling unit</u>	actual	→
Cooling capacity – delivered:	1.8 kW (@ 67 K)	→
Cooling capacity - total:	3.4 kW (@ 64 K)	→
Liquid nitrogen consumption:	68 kg/h	→
Pel.	9 kW	→

design 4.0 kW 5.6 kW 110 kg/h 13 kW

Redundancy

- 2 circulation pumps (instead of 1)
- 3 vacuum pumps (instead of 2)

almost 100% redundany with 5% additional investment

Source: F. Herzog, et.al., "Cooling unit for the AmpaCity project – One year successful operation", Cryogenics Volume 80, Part 2, December 2016, Pages 204-20, DOI: 10.1016/j.cryogenics.2016.04.001

The war of currents – a brief history

1880s	DC (Edison) and AC (Westinghouse) power systems were introduced
	Low voltage operation – Long distance transmission unpractical
1886	Transformer – Efficient long distance AC transmission possible
	Mercury-arc power electronics
1954	First static HVDC system installed in Russia
	Power semiconductors devices
1972	First modern HVDC system installed in Canada based on thyristors valves
	A
	 Hundreds of high power HVDC systems installed worldwide
now	 Increased penetration of DC technology for management of renewable sources
	 Increased DC power demand due to customers (ICT, smart grids, control,)
	DC Centrury is started
Antonio Mor	randi ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA 4

A case study in HTS DC transmission

The case study:BipolConfigurationBipolRated powerPn = 3Rated voltageV_{dc} =

Bipolar (two monopoles) Pn = 3600 MW $V_{dc} = \pm 200 \text{ kV}$

As a figure of merit the cooling loss per unit length of the SC cable will be compared with the loss of a copper cable system of the same rating calculate under the assumption

Current density	$J_{Cu} = 1 \text{ A/mm}^2$
Resistivity,	$ρ_{Cu} = 2.1 \mu\Omega cm$

Loss of a transmissionlevel cable system

Termination loss are negligible since they correspond to less than 1 km of cable

Loss reduction (per km) with respect to copper amount to

50 % for MgB₂ / LH₂ 81 % for MgB₂ / LH₂-LN₂ 87 % for 2G HTS/ LH₂

Both 2G HTS/ LH₂ and MgB₂ / LH₂-LN₂ are very competitive for the considered transport power

The right of way

The right of way

- Industry limit of the Copper section of conventional HVDC cable: ٠ 2500 mm² - corresponding to a current capacity of 2.0 - 2.5 kA
- More cable must be used in parallel if greater current is to be transported
- Mutual heating occurs between adjacent cables ٠
- Appropriate spacing must be provided for avoiding thermal runaway •

The transport capacity of a cable system strongly depends on

- ✓ spacing between cables
- \checkmark soil condition

F. Lesur, RTE, Superconducting MgB, cable, Potsdam - 2013

- 1. No spacing concerns exits with SC cables which operates at constant temperature independently on ambient and soil conditions
- 2. One single cable meets all the required transport capacity

Right of way of high power links is drastically reduced with SC Cables

An example: the right of way of a 3600 MW link – draw is to scale

Thank you for your attention antonio.morandi@unibo.it

